Caffeine Cas No. [58-08-2] Caffeine is a bitter, white crystalline xanthine alkaloid that is a psychoactive stimulant drug. Caffeine was discovered by a German chemist, Friedrich Ferdinand Runge, in 1819. He coined the term kaffein, a chemical compound in coffee, which in English became caffeine. Caffeine is also part of the chemical mixtures and insoluble complexes guaranine found in guarana, mateine found in mate, and theine found in non-herbal tea; all of which contain additional alkaloids such as the cardiac stimulants theophylline and theobromine, and often other chemicals such as polyphenols which can form insoluble complexes with caffeine. Caffeine is found in varying quantities in the beans, leaves, and fruit of some plants, where it acts as a natural pesticide that paralyzes and kills certain insects feeding on the plants. It is most commonly consumed by humans in infusions extracted from the cherries of the coffee plant and the leaves of the tea bush, as well as from various foods and drinks containing products derived from the kola nut. Other sources include yerba mate, guarana berries, and the Yaupon Holly. In humans, caffeine is a central nervous system (CNS) stimulant, having the effect of temporarily warding off drowsiness and restoring alertness. Beverages containing caffeine, such as coffee, tea, soft drinks, and energy drinks enjoy great popularity. Caffeine is the world's most widely consumed psychoactive substance, but unlike many other psychoactive substances it is legal and unregulated in nearly all jurisdictions. In North America, 90% of adults consume caffeine daily. The U.S. Food and Drug Administration lists caffeine as a "multiple purpose generally recognized as safe food substance". Caffeine has diuretic properties, at least when administered in sufficient doses to subjects who do not have a tolerance for it. Regular users, however, develop a strong tolerance to this effect, and studies have generally failed to support the common notion that ordinary consumption of caffeinated beverages contributes significantly to dehydration. We all know that one of the most powerful chemical compounds found in both coffee and tea is caffeine. Has caffeine become an important part of your daily life? Did you know Article : What Is Caffeine? Caffeine is a drug that is naturally produced in the leaves and seeds of many plants. It's also produced artificially and added to certain foods. Caffeine is defined as a drug because it stimulates the central nervous system, causing increased alertness. Caffeine gives most people a temporary energy boost and elevates mood. Caffeine is in tea, coffee, chocolate, many soft drinks, and pain relievers and other over-the-counter medications. In its natural form, caffeine tastes very bitter. But most caffeinated drinks have gone through enough processing to camouflage the bitter taste. Teens usually get most of their caffeine from soft drinks and energy drinks. (In addition to caffeine, these also can have added sugar and artificial flavors.) Caffeine is not stored in the body, but you may feel its effects for up to 6 hours. Caffeine Occurrence Cas No. [58-08-2] Roasted coffee beans, a common source of caffeine Caffeine is found in many plant species, where it acts as a natural pesticide, with high caffeine levels being reported in seedlings that are still developing foliages, but are lacking mechanical protection; caffeine paralyzes and kills certain insects feeding upon the plant. High caffeine levels have also been found in the surrounding soil of coffee bean seedlings. It is therefore understood that caffeine has a natural function as both a natural pesticide and as an inhibitor of seed germination of other nearby coffee seedlings thus giving it a better chance of survival. The most commonly used sources of caffeine are coffee, tea, and to a lesser extentcaffeine manufacturing cacao. Less commonly used sources of caffeine include the yerba maté and guarana plants,which are sometimes used in the preparation of teas and energy drinks. Two of caffeine's alternative names, mateine and guaranine, are derived from the names of these plants. Some yerba mate enthusiasts assert that mateine is a stereoisomer of caffeine, which would make it a different substance altogether. This is not true because caffeine is an achiral molecule, and therefore has no enantiomers; nor does it have other stereoisomers. The disparity in experience and effects between the various natural caffeine sources could be due to the fact that plant sources of caffeine also contain widely varying mixtures of other xanthine alkaloids, including the cardiac stimulants theophylline and theobromine and other substances such as polyphenols which can form insoluble complexes with caffeine. One of the world's primary sources of caffeine is the coffee "bean" (which is the seed of the coffee plant), from which coffee is brewed. Caffeine content in coffee varies widely depending on the type of coffee bean and the method of preparation used; even beans within a given bush can show variations in concentration. In general, one serving of coffee ranges from 40 milligrams, for a single shot (30 milliliters) of arabica-variety espresso, to about 100 milligrams for a cup (120 milliliters) of drip coffee. Generally, dark-roast coffee has less caffeine than lighter roasts because the roasting process reduces the bean's caffeine content. Arabica coffee normally contains less caffeine than the robusta variety. Coffee also contains trace amounts of theophylline, but no theobromine. Tea is another common source of caffeine. Although tea contains more caffeine than coffee, a typical serving contains much less, as tea is normally brewed much weaker. Besides strength of the brew, growing conditions, processing techniques and other variables also affect caffeine content. Certain types of tea may contain somewhat more caffeine than other teas. Tea contains small amounts of theobromine and slightly higher levels of theophylline than coffee. Preparation and many other factors have a significant impact on tea, and color is a very poor indicator of caffeine content. Teas like the pale Japanese green tea gyokuro, for example, contain far more caffeine than much darker teas like lapsang souchong, which has very little. Caffeine is also a common ingredient of soft drinks such as cola, originally prepared from kola nuts. Soft drinks typically contain about 10 to 50 milligrams of caffeine per serving. By contrast, energy drinks such as Red Bull can start at 80 milligrams of caffeine per serving. The caffeine in these drinks either originates from the ingredients used or is an additive derived from the product of decaffeination or from chemical synthesis. Guarana, a prime ingredient of energy drinks, contains large amounts of caffeine with small amounts of theobromine and theophylline in a naturally occurring slow-release excipient. Chocolate derived from cocoa contains a small amount of caffeine. The weak stimulant effect of chocolate may be due to a combination of theobromine and theophylline as well as caffeine.A typical 28-gram serving of a milk chocolate bar has about as much caffeine as a cup of decaffeinated coffee. In recent years various manufacturers have begun putting caffeine into shower products such as shampoo and soap, claiming that caffeine can be absorbed through the skin.However, the effectiveness of such products has not been proven, and they are likely to have little stimulatory effect on the central nervous system because caffeine is not readily absorbed through the skin. Various manufacturers market caffeine tablets, claiming that using caffeine of pharmaceutical quality improves mental alertness. These effects have been borne out by research that shows that caffeine use (whether in tablet form or not) results in decreased fatigue and increased attentiveness. These tablets are commonly used by students studying for their exams and by people who work or drive for long hours. Caffeine is also used pharmacologically to treat apnoea in premature newborns and as such is one of the 10 drugs most commonly given in neonatal intensive care, though questions are now raised based on experimental animal research whether it might have subtle harmful side-effects.